

This document consists of 13 printed pages.

© UCLES 2022

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9618/22

Paper 2 Problem Solving & Programming October/November 2022

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most
Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level
components.

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 2 of 13

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level descriptors
for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit

is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these

features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 3 of 13

Question Answer Marks

1(a)(i) One mark for each point (Max 2):

• When a task which is repeated / reused / performed in several places
• When a part of an algorithm performs a specific task
• Reduces complexity of program / program is simplified // subroutine

already available
• Testing / debugging / maintenance is easier

2

1(a)(ii) One mark for each part:

Term: Parameter(s)

Use: to pass values / arguments to the procedure

2

1(b) One mark for test stage, one mark for each description point
(Max 3 for Description)

Test stage: Beta testing

Description:

1 Testing carried out by a small group of (potential) users
2 Users will check that the software works as required / works in the real

world / does not contain errors
3 Users will feedback problems / suggestions for improvement
4 Problems / suggestions identified are addressed (before the program is

sold)

4

1(c) One mark per row:

Expression Evaluation

MID(CharList, MONTH(FlagDay), 1) 'D'

INT(Count / LENGTH(CharList)) 4

(Count >= 99) AND (DAY(FlagDay) > 23) FALSE

3

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 4 of 13

Question Answer Marks

2(a)(i) One mark per step (or equivalent):

1 Open file in APPEND mode (and subsequent Close)
2 Prompt and Input a student name and mark
3 If mark greater than or equal to 20 jump to step 5
4 Write only the name to the file
5 Repeat from Step 2 for 35 times / the number of students

5

2(a)(ii) Data in a file is saved after the computer is switched off / stored
permanently // no need to re-enter the data when the program is re-run

1

2(a)(iii) Example answer:

So that existing file data is not overwritten.

1

2(b)

One mark per row (row 2 to 5):

Input Output Next state

 S1

Input-A Output-X S2

Input-A (none) S2

Input-B Output-W S3

Input-A Output-W S4

4

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 5 of 13

Question Answer Marks

3(a) One mark for name, Max two for features (Max 3 in total)

Name: Queue

Features:
1 Each queue element contains one data item
2 A Pointer to the front / start of the queue
3 A Pointer to the back / end of the queue
4 Data is added at back / end and removed from front / start // works on a

FIFO basis
5 May be circular

ALTERNATIVE:

Name: Linked List

Features:
1 Each node contains data and a pointer to the next node
2 A Pointer to the start of the list
3 Last node in the list has a null pointer
4 Data may be added / removed by manipulating pointers (not moving

data)
5 Nodes are traversed in a specific sequence
6 Unused nodes are stored on a free list // a free-list pointer to the Free

List

3

3(b) One mark per point (Max 5):

1 Declare a (1D) array of data type STRING
2 The number of elements in that array corresponds to the size of the

required stack
3 Declare an integer / variable for StackPointer
4. Declare an integer / variable for the size of the stack // for the max value

of StackPointer
5 Use the StackPointer as an index to the array
6 Pointers and variables initialised to indicate empty stack
7 Store each item on the stack as one array element / Each stack item

maps to one array element
8 Attempt to describe Push and Pop operations
9 Push and Pop routines need to check for full or empty conditions

5

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 6 of 13

Question Answer Marks

3(c) One mark for each:

1 Data 'After Group 1' (as shown, including blank cells)
2 Data 'After Group 2' (as shown, including blank cells)
3 Data 'After Group 3' (as shown, including blank cells)
4 SP 'After Group 1' pointing to location 955
5 Final two SPs pointing to locations 952 and 954

5

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 7 of 13

Question Answer Marks

4(a) One mark per point:

1 Input UserID and use of GetAverage()and assignment
2 Initialisation of Total to zero and Index to 4
3 Conditional loop with Index from 4 to 6
4 Assignment of Last from element SameMonth[Index] in a loop
5 Structure: IF...THEN...ELSE...ENDIF in a loop
6 Correct assignments and final call to Update()after the loop

INPUT UserID

Average GetAverage(UserID)

Total 0

Index 4

WHILE Index < 7 // REPEAT

 Last SameMonth[Index]

 IF Average > Last THEN

 Total Total + Average

 ELSE

 Total Total + Last

 ENDIF

 Index Index + 1

ENDWHILE // UNTIL Index = 7

CALL Update(UserID, Total)

Alternative solution using FOR loop:

One mark per point FOR loop solution:
1 Input UserID and use of GetAverage()and assignment
2 Initialisation of Total to zero
3 loop Index from 4 to 6
4 Assignment of Last from array SameMonth in a loop
5 Comparison IF...THEN...ELSE...ENDIF in a loop
6 Appropriate assignments in a loop AND final call to Update()after

 the loop

INPUT UserID

Average GetAverage(UserID)

Total 0

FOR Index 4 TO 6

 Last SameMonth[Index]

 IF Average > Last THEN

 Total Total + Average

 ELSE

 Total Total + Last

 ENDIF

NEXT Index

CALL Update(UserID, Total)

6

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 8 of 13

Question Answer Marks

4(b) Pre-condition (loop) / count-controlled (loop) 1

Question Answer Marks

5 One mark per IF...THEN...ENDIF clause:

1 IF A AND B AND C THEN
 CALL Sub1()

 ENDIF

2 IF (A AND B) AND NOT C THEN
 CALL Sub2()

 ENDIF

3 IF (NOT A) AND (NOT C) THEN
 CALL Sub3()

 ENDIF

4 IF (NOT A) AND C THEN
 CALL Sub4()

 ENDIF

4

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 9 of 13

Question Answer Marks

6(a) Example by repeated multiplication:

Mark as follows (multiplication solution), (Max 7):

1 Function heading and ending including parameter and return type
2 Declaration and initialisation of local Num
3 Any conditional loop
4 Conditional loop until ThisValue found or Try out of range
5 Multiply Try by Num in a loop
6 Compare Try with ThisValue and set termination if the same in

a loop
7 Increment Num and repeat in a loop
8 Attempt to Return Num if ThisValue is a factorial or -1 otherwise

FUNCTION FindBaseNumber(ThisValue : INTEGER) RETURNS

INTEGER

 DECLARE Num, Try : INTEGER

 DECLARE Found : BOOLEAN

 Num 0

 Found FALSE

 Try 1

 WHILE Try <= ThisValue AND Found = FALSE

 Num Num + 1

 Try Try * Num

 IF Try = ThisValue THEN //BaseNumber found

 Found TRUE

 ENDIF

 ENDWHILE

 IF Found = TRUE THEN

 RETURN Num

 ELSE

 RETURN -1

 ENDIF

ENDFUNCTION

7

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 10 of 13

Question Answer Marks

6(a) Alternative FOR LOOP solution.

Mark as follows:
1 Function heading and ending including parameter and return type
2 Declaration of local Integer value for Num and Try
3 Count-controlled Loop from 1 to ThisValue
4 Multiply Try by Num in a loop
5 Compare Try with ThisValue in a loop
6 ...Immediate return of Num if they are the same in a loop
7 Return –1 if ThisValue not found after loop

FUNCTION FindBaseNumber(ThisValue : INTEGER) RETURNS

INTEGER

 DECLARE Num, Try : INTEGER

 Try 1

 FOR Num 1 TO ThisValue

 Try Try * Num

 IF Try = ThisValue THEN //BaseNumber found

 RETURN Num

 ENDIF

 NEXT Num

 RETURN -1

ENDFUNCTION

6(b) One mark per row.

Examples of invalid strings:

1 Non-numeric but not "End" // contains space or other non-numeric

characters
2 Real number
3 Integer value out of range (i.e. <= 0)
4 Empty string
5 Correct word but wrong case e.g. "end" rather than "End"

Input Reason for choice

"Aardvark" Non-numeric (and not "End")

"27.3" Numeric but not an integer

"-3" // "0" A non-positive integer

"" An empty string

4

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 11 of 13

Question Answer Marks

7(a) One mark per point (Max 6):

1 Procedure heading and ending including parameters
2 Conditional loop containing incrementing Index...
3 ...terminating when ErrNum found
4 ...terminating when ErrCode[Index] > ErrNum (i.e. ErrNum

not found)
5 ... OR after element 500 tested
6 Test if found and OUTPUT 'Found' message
7 ...otherwise OUTPUT 'Not Found' message

PROCEDURE OutputError(LineNum, ErrNum : INTEGER)

 DECLARE Index : INTEGER

 Index 0

 // Search until ErrNum found OR not present OR end of

array

 REPEAT

 Index Index + 1

 UNTIL ErrCode[Index] >= ErrNum OR Index = 500

 IF ErrCode[Index] = ErrNum THEN

 OUTPUT ErrText[Index], " on line ", LineNum

//Found

 ELSE

 OUTPUT "Unknown error on line ", LineNum //Not

found

 ENDIF

ENDPROCEURE

6

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 12 of 13

Question Answer Marks

7(b) One mark per point (Max 8):

1 Procedure heading and ending as shown
2 Conditional loop correctly terminated
3 An inner loop
4 Correct range for inner loop
5 Comparison (element J with J+1) in a loop
6 Swap elements in both arrays in a loop
7 'No-Swap' mechanism:

• Conditional outer loop including flag reset
• Flag set in inner loop to indicate swap

8 Efficiency (this scenario): terminate inner loop when ErrCode = 999
9 Reducing Boundary in the outer loop

PROCEDURE SortArrays()

 DECLARE TempInt, J, Boundary : INTEGER

 DECLARE TempStr : STRING

 DECLARE NoSwaps : BOOLEAN

 Boundary 499

 REPEAT

 NoSwaps TRUE

 FOR J 1 TO Boundary

 IF ErrCode[J]> ErrCode[J+1] THEN

 //first swap ErrCode elements

 TempInt ErrCode[J]

 ErrCode[J] ErrCode[J+1]

 ErrCode[J+1] TempInt

 //now swap corresponding ErrText elements

 TempStr ErrText[J]

 ErrText[J] ErrText[J+1]

 ErrText[J+1] TempStr

 NoSwaps FALSE

 ENDIF

 NEXT J

 Boundary Boundary - 1

 UNTIL NoSwaps = TRUE

ENDPROCEDURE

8

7(c)(i) ErrCode should be an INTEGER // ErrCode should not be a STRING 1

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2022

© UCLES 2022 Page 13 of 13

Question Answer Marks

7(c)(ii) Benefits include:

1 Array of records can store mixed data types / multiple data types under

a single identifer
2 Tighter / closer association between ErrCode and ErrText // simpler

code as fields may be referenced together // values cannot get out of
step as with two arrays

3 Program easier to design / write / debug / test / maintain / understand

One mark per point

Note: Max 2 marks

2

7(c)(iii) DECLARE Error : ARRAY[1:500] OF ErrorRec 1

