Please check the examination details	s below before enter	ring your candidate information
Candidate surname		Other names
Pearson Edexcel	Centre Number	Candidate Number
International		
Advanced Level	ш	
	Paper	WCHACIOA
Time 1 hour 20 minutes	reference	WCH16/01
Classistan		A A
Chemistry		
International Advanced	Level	
UNIT 6: Practical Skills		rv II
Ottil Ottil General Skills	iii Ciiciiiist	. ,
	A 1.	
(V	AM.	(T.111.1)
You must have:		Total Marks
Scientific calculator, ruler		

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P64628A
©2021 Pearson Education Ltd.
1/1/1/1/1/1

Answer ALL the questions. Write your answers in the spaces provided.

- 1 This question is about compounds containing the ammonium ion, NH₄⁺.
 - (a) Ammonium vanadate(V), NH₄VO₃, is a white solid.
 - (i) When excess dilute sulfuric acid is added to an aqueous solution of NH_4VO_3 , the VO_3^+ ion is converted into the VO_2^+ ion.

Write the **ionic** equation for the conversion of VO_3^- to VO_2^+ on the addition of dilute sulfuric acid. State symbols are not required.

(1)

(ii) State the colour of an **acidified** solution of ammonium vanadate(V).

(1)

(iii) A student added zinc metal to an acidified solution of ammonium vanadate(V). The zinc reduced the vanadium in a series of reactions.

The student suggested that the sequence of colours observed could be explained by the presence of the vanadium species shown in the table.

Sequence of colours observed	starting → green → blue → green → violet
Suggested vanadium species	$VO_2^+ \longrightarrow V^{3+} \longrightarrow VO^{2+} \longrightarrow V^{3+} \longrightarrow V^{2+}$

Explain whether or not the student is correct.

Refer to oxidation states of vanadium and account for each colour in the sequence.

(2)

Suggest an explanation for these observations.	(2)
	(2)
Ammonium tetrachlorocuprate(II) dihydrate, $(NH_4)_2CuCl_4 \cdot 2H_2O$, is a blue-green so When ammonium tetrachlorocuprate(II) dihydrate is dissolved in water, a blue-green solution T is formed.	olid.
 (i) Suggest the formulae of two complex ions present in solution T .	(2)
 (ii) State how the colour of solution T would change on the addition of excess concentrated hydrochloric acid.	(1)
 (iii) Describe what would be observed on the addition of aqueous sodium hydroxide to solution T .	(1)
 (iv) When the mixture from (b)(iii) is warmed, a gas is evolved. Give a test to identify the gas stating the positive result of the test.	(2)

Turn over

2 This question concerns the laboratory preparation of tetraamminecopper(II) sulfate-1-water, Cu(NH₃)₄SO₄•H₂O.

Procedure

- Step 1 Weigh between 2.1 g and 2.3 g of hydrated copper(II) sulfate, CuSO₄•5H₂O, in a boiling tube. Add 8 cm³ of distilled water and place the boiling tube in a hot water bath. Stir the mixture until the crystals have dissolved.
- Step 2 Working in a fume cupboard, slowly pour 5 cm³ of concentrated aqueous ammonia into the boiling tube. Stir until a clear solution is obtained.
- Step **3** Measure 12 cm³ of ethanol into a 100 cm³ conical flask and add the contents of the boiling tube from Step **2**. Stopper the flask and swirl the contents before placing the flask in an ice bath. Allow the mixture to stand until crystals of Cu(NH₃)₄SO₄•H₂O have formed.
- Step **4** Filter the crystals obtained in Step **3** under reduced pressure, using a Buchner funnel and flask.
- Step 5 Pour 5 cm³ of cold ethanol over the crystals in the funnel.
- Step 6 Using a spatula, transfer the crystals to a filter paper on a watch glass. Press a second piece of filter paper on the crystals, to dry them as much as possible.
- Step 7 Transfer the crystals to a dry, pre-weighed sample bottle and reweigh.
- (a) Give a reason why a measuring cylinder is more suitable than a graduated pipette for measuring the distilled water in Step 1.

(1)

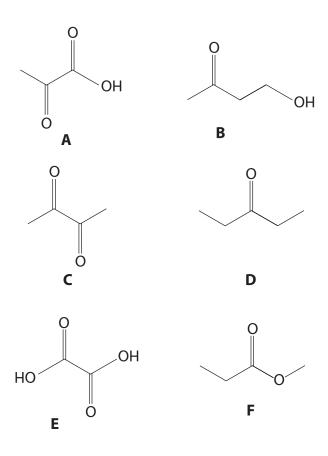
(b) Give the colour of the solution at the end of Step 2.

(1)

(c) Give the reason why Step 2 should be carried out in a fume cupboard.

(1)

(e) Draw a labelled diagram of the apparatus used to filter the crystals under reduced pressure in Step 4 .	(3)
(f) (i) State the purpose of the ethanol in Step 5 .	
(ii) Give a reason why the ethanol is cold.	(1)



	arting with 2.17 g of $CuSO_4$ •5 H_2O and using excess ammonia, a student obtaine 4 g of product.	u
(i)	Calculate the apparent percentage yield of Cu(NH ₃) ₄ SO ₄ •H ₂ O.	
	Give your answer to an appropriate number of significant figures.	(3)
(ii)	Suggest a reason why the apparent percentage yield in this preparation is often greater than 100%.	
		(1)

(Total for Question 2 = 13 marks)

3 This question is about the identification of six organic compounds.

- (a) From A, B, C, D, E and F, identify the compound with
 - (i) the fewest peaks in its **carbon-13** NMR spectrum.

(1)

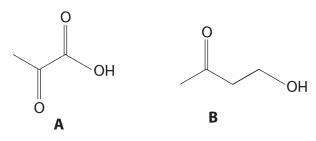
(ii) the most peaks in its **low** resolution **proton** NMR spectrum.

(1)

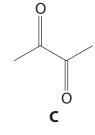
(iii) three peaks with relative peak area 3:2:3 in its **low** resolution proton NMR spectrum.

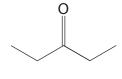
(1)

(iv) one triplet and one quartet as the only peaks in its **high** resolution proton NMR spectrum.


(1)

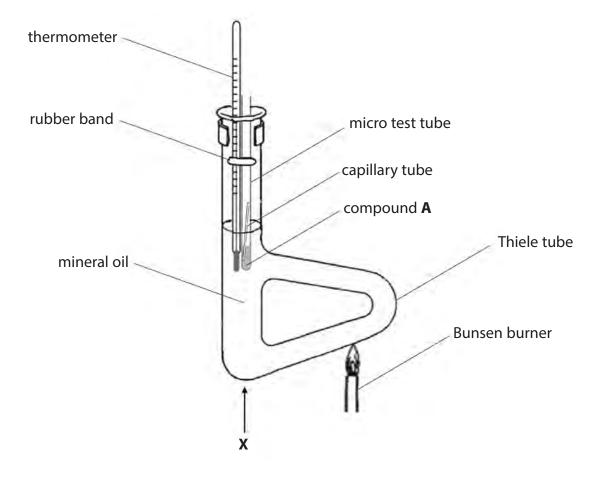
(b) For each of the following pairs, give **one chemical** test, not including indicators, that could be used to distinguish the compounds.


Identify the reagents and give the results of each test.


(i) A and B

(ii) C and D

D



(2)

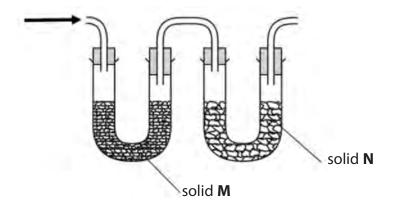
(2)

(c) Liquids boil at the temperature at which their vapour pressure is equal to atmospheric pressure.

The apparatus shown below was used to determine the boiling temperature of compound **A**, which is a liquid at room temperature and pressure and has a boiling temperature in the range 120°C to 180°C.

Procedure

- Step 1 Place a capillary tube, sealed at one end and with the open end facing down, into 0.5 cm³ of compound **A** in a micro test tube. Attach the micro test tube to a thermometer with a rubber band.
- Step 2 Clamp the micro test tube and thermometer in the mineral oil, making sure neither test tube nor thermometer bulb is in contact with the glass walls of the Thiele tube.
- Step **3** Move a small Bunsen flame back and forth along the lower part of the side-arm of the Thiele tube. An initial stream of bubbles will come from the open end of the capillary tube.
- Step **4** Continue heating until a rapid and continuous stream of bubbles comes from the capillary tube. Stop heating and record the temperature as soon as compound **A** is drawn up into the capillary tube.


() State what causes the initial stream of bubbles from the capillary tube in Step 3	3 . (1)
(i) Suggest why the side-arm of the Thiele tube is heated, rather than point X on the diagram.	(1)
(ii) Suggest why mineral oil, and not water, is used in the Thiele tube when determining the boiling temperature of compound A .	(1)
(v) Suggest why the results obtained when using this apparatus on different days may not be the same, even when no mistakes are made in carrying out the experiment.	(1)

(d) **One** of the compounds **A**, **B**, **C**, **D**, **E** or **F** was analysed.

To determine its empirical formula, 1.57 g of the compound was burned completely and the combustion products passed through the apparatus shown.

Solid **M** absorbed water and increased in mass by 1.28 g.

Solid N absorbed carbon dioxide and increased in mass by 3.14g.

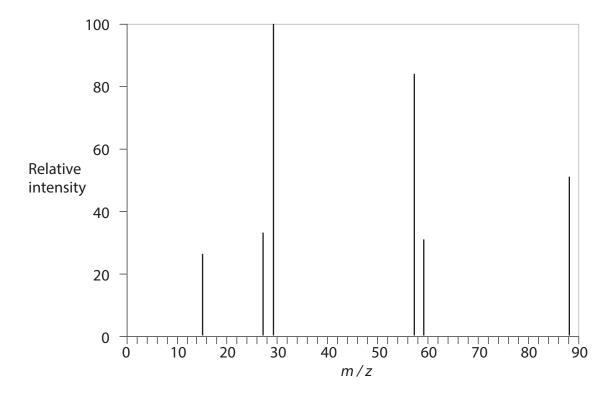
(i) Identify, by name or formula, suitable substances for solids **M** and **N**.

1	7	١
I	4	J

Solid N			

Solid M

(ii) Calculate the **empirical** formula of the compound, using the data given.


You **must** show your working.

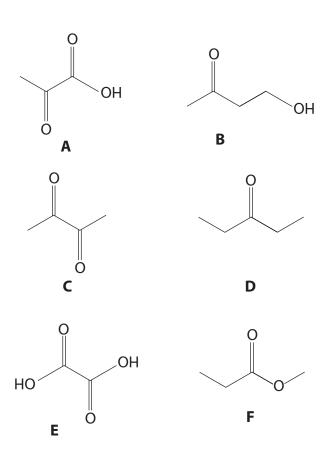
(4)

(iii) The mass spectrum of the compound is shown.

Deduce the relative molecular mass of the compound, using the mass spectrum.

(1)

(iv) Deduce the molecular formula of the compound, using your answers to (d)(ii) and (d)(iii).


(1)

(v) Determine the identity of the compound, using your answer to (d)(iv) and the fragmentation pattern of the mass spectrum.

Justify your answer.

(2)

(Total for Question 3 = 22 marks)

TOTAL FOR PAPER = 50 MARKS

The Periodic Table of Elements

0 (8)	(18)	4.0	H	helium
7				
9				
S.				
4				
m				
		1.0	Ι	hydrogen

0 0 5	2.0.50	9: June 3:	8. Ton	m au 5	22] on 6	
Helium 2	20.2 Ne	39.9 Ar argon 18	Krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	orted
(17)	19.0 Filluorine	35.5 CI chlorine 17	Br bromine 35	126.9 I fodine 53	[210] At astatine 85	been repo
(16)	16.0 O oxygen 8	32.1 S sulfur 16	Se selenium	127.6 Te tellurium 52	Po potonium 84	116 have b
(15)	14.0 N nitrogea 7	31.0 P	As arsenic	Sb antimony 51	Bi bismuth 83	tamic numbers 112-116 hav but not fully authenticated
(14)	12.0 C carbon 6	28.1 Si stltcon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb tead 82	atomic nur but not fi
(13)	10.8 B boron 5	27.0 AI atuminium 13	Ga galllum 31	114.8 In indium 49	204.4 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
		(12)	65.4 Zn zinc	Cd Cd cadmium 48	Hg mercury 80	Elem
		(11)	63.5 Cu copper	Ag silver 47	197.0 Au gold 79	Rg centgenium
		(10)	58.7 nickel	Pd Pd pattadium 46	Pt Pt platinum 78	[268] [271] [272] Mt Ds Rg Rg metherium damstatum coertgenium 109 110
		(6)	Co cobalt	Rh rhodium 45	192.2 Ir indium 77	[268] Mt netnenium 109
Tydrogen -		(8)	55.8 Fe	Ru ruthenlum	190.2 Osmium 76	Hs Hassium 108
		0	Mn Manganese	[98] Tc technetium 43	Re rhenium 75	[264] Bh bohrlum 107
	mass ool umber	(9)	50.9 52.0 54.9 V Cr Mm	Mo molybdenum 42	183.8 W tungsten 74	Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium	E .	180.9 Ta tantalum 73	[262] Db dubnium 105
	relati ator	(4)	47.9 Ti titanium	91.2 Zr zircontum 40	Hf Hafnium 72	Rf nutherfordum 104
		(3)	Sc scandium	o €	138.9 La* tanthanum 57	Ac*
(2)	9.0 Be beryllium 4	Mg magnesium 12	Calcium	87.6 Sr strontium	m E	[226] Ra radium 88
(1)	6.9 Li ((th)(um	Na sodium 11	39.1 K potassium	Rb rubidium 37	132.9 Cs caesium 55	[223] Fr franctum 87

Springs	200
anthanida	
4	

^{*} Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
e	P	PN	Pm	Sm	Eu	PS	4	ð	유	ŭ	Ę	Υb	P.
rium	prasecolymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
28	- 26	09	61	62	63	29	92	99	19	89	69	70	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
E	Pa	_	ď	PG	Am	E)	Bķ	ซ	Es	FE	PW	9 N	5
mnin	protactimum	uranium	neptunium	plutonium	amendum	arram	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
06	16	92	93	94	95	96	45	86	66	100	101	102	103

